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Abstract. The diabatic approach to dissipative collective nuclear motion is reformulated in the local-
density approximation in order to treat the normal modes of a spherical nuclear droplet analytically. In a
first application the adiabatic isoscalar modes are studied and results for the eigenvalues of compressional
(bulk) and pure surface modes are presented as function of density and temperature inside the droplet, as
well as for different mass numbers and for soft and stiff equations of state. We find that the region of bulk
instabilities (spinodal regime) is substantially smaller for nuclear droplets than for infinite nuclear matter.
For small densities below 30% of normal nuclear matter density and for temperatures below 5 MeV all
relevant bulk modes become unstable with similar growth rates. The surface modes have a larger spinodal
region, reaching out to densities and temperatures way beyond the spinodal line for bulk instabilities.
Essential experimental features of multifragmentation, like fragmentation temperatures and fragment-
mass distributions (in particular the power-law behavior) are consistent with the instability properties
of an expanding nuclear droplet, and hence with a dynamical fragmentation process within the spinodal
regime of bulk and surface modes (spinodal decomposition).

PACS. 21.60.Ev Collective models – 21.65.+f Nuclear matter – 25.70.Mn Projectile and target fragmen-
tation

1 Introduction and summary

In bombardments of nuclei with light and heavy ions,
as well as by absorption of pions and antiprotons in nu-
clei, transient systems are produced at excitation energies
around 10 MeV/u, which decay into several fragments of
intermediate size. Increasing interest [1–4] in this multi-
fragmentation reaction has been initiated by the obser-
vation [5] that the fragment-mass distribution is propor-
tional to A−σ (power law with σ ≈ 2.6) indicating that
the process may be related to the critical point of the
liquid-gas phase transition of nuclear matter. Indeed, sim-
ulations within molecular dynamics [6–8] and mean-field
approaches [9–12] show that initial compression in cen-
tral heavy-ion collisions or pure excitation of a nucleus by
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abrasion of nucleons or by absorption of light ions, pions
or antiprotons cause the system to expand and to break up
into pieces in a low-density regime. Power-law fragment-
mass distributions have also been obtained from dynami-
cal nucleation in a thermodynamically unstable nucleonic
system [13]. However, as indicated by the great success
of statistical models [14–17], the observables in multifrag-
mentation seem to be mainly determined by the available
phase space at the point of freeze out [18]. This conclusion
remains valid even if the time evolution (expansion) of the
statistically emitting source is taken into account [19].

With the discovery of a caloric curve in projectile frag-
mentation by the ALADIN collaboration [20], the nu-
clear liquid-gas phase transition as a mediator between the
heated expanding nuclear matter and its decay into pieces
moved again into the center of discussions. The growth of
density instabilities within the spinodal region inside the
phase coexisting regime, known as spinodal decomposi-
tion [21], has early been considered as a possible mecha-
nism of multifragmentation [22–24]. Extending Landau’s
Fermi-liquid theory to finite temperatures Heiselberg, Pet-
hick and Ravenhall [25] have investigated the stability and
instability of hot and dilute infinite nuclear matter. Sub-
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sequent studies have been concerned with detailed prop-
erties of nuclear matter [26] and finite droplets [27–30] in
and around the spinodal regime. Quantal effects, as stud-
ied within constrained RPA [28], do not alter the adiabatic
instabilities as calculated from a fluid-dynamical descrip-
tion [27] and simulations [29] within a stochastic mean
field approach. Some experimental evidence for spinodal
decomposition has been reported by Rivet et al. [31].

Our model for examining the stability and instability
of a hot and dilute nuclear droplet is based on the diabatic
approach to dissipative large-amplitude collective motion
[32–34] and, by the use of a local energy-density approxi-
mation, is similar in spirit to the Fermi liquid-drop model
of Kolomietz and Shlomo [30]. However, instead of using
the fluid-dynamical approach with the boundary of zero
total pressure on the fixed surface as in [30,35], we con-
sider a general displacement field, which is defined by an
expansion of the displacement potential in terms of multi-
poles, and include Coulomb interactions. This expansion
with a suitable boundary condition for the complete ba-
sis set allows the analytical evaluation of collective mass
and stiffness tensors within a consistent harmonic approx-
imation. The set of eigenvalue equations couple modes
with different number of nodes in the radial function of
the displacement field. In contradistinction to [27], where
dispersion relations of the energy as a function of radial
wave number for different multipoles have been obtained
in the adiabatic limit (no deformations of the local Fermi
sphere), we determine the orthogonal eigenmodes of the
droplet as function of the relaxation time τ for the decay
of deformations of the local Fermi sphere, i.e. continuously
from the adiabatic to the diabatic limit. Furthermore we
study also pure surface modes and compare the instability
properties for soft and stiff equations of state. In this way
we extend the exploratory studies [27–30] of spinodal in-
stabilities of finite droplets to a more systematic analysis
of stability and instability by examining the eigenmodes
of a nuclear droplet as functions of densities and temper-
atures, relevant in the multifragmentation process.

In the following, which forms part I of a series of
publications, we present detailed results on isoscalar bulk
and surface modes with fixed ratio of neutron and proton
densities in the adiabatic limit (very fast equilibration,
τ → 0). Since τ ∝ T−2, cf. [36], this corresponds to the
high-temperature limit. We have studied these adiabatic
isoscalar modes in detail, because they are related to ther-
modynamics and to many studies performed in the past.
In subsequent papers we will present the modifications due
to dissipation (0 < τ < ∞) and extend the study to the
inclusion of isovector modes, which to our knowledge have
been studied so far only for infinite nuclear matter [37–39]
and for a lattice gas [40].

The results on adiabatic isoscalar bulk instabilities
(preliminary calculations have been presented earlier [41])
are summerized as follows.

– As compared to infinite nuclear matter the spinodal
region for compressional (bulk) instabilities shrinks to
smaller densities and temperatures with Tcrit = 6 MeV
for a soft equation of state (EOS). This effect is due to

an increase of stability, which results from the Weizsäc-
ker term ∝ (∇�)2 in the energy density and the finite
wave lengths of density fluctuations in the droplet. The
observed fragmentation temperatures of about 5 MeV
(cf. [20]) are consistent with spinodal decomposition
after expansion. Typical values for the growth rates are
γ ≈ 5 MeV corresponding to growth times �/γ ≈ 40
fm/c.

– Effects from Coulomb interactions on the bulk insta-
bilities are negligible, although, as shown in [42], they
are important at later stages of the multifragmentation
process, where statistical models apply.

– As compared to the soft EOS, a stiff EOS yields a
larger spinodal region with Tcrit = 8 MeV. Typical
values for the growth rates of instabilities are larger
by almost a factor 2.

– With decreasing density and temperature the modes
with the lowest multipolarities and no radial node be-
come unstable first.

– At densities below 0.3�0 (with �0 = 0.16 fm−3) the
instability growth rates for different multipolarities
(l = 2, 3, 4, 5) and number of nodes (n = 0, 1, 2, 3)
are practically equal. This property can yield a power
law behavior A−σ with σ ≈ 2.0 of the fragment-mass
distribution which is in agreement with experimental
observations, cf. [43], but is not related to the criti-
cal point. Additional components from evaporation at
lower excitation energies and non-equilibrium coales-
cence at higher excitation energies are considered re-
sponsible for the observed larger values of σ.

For finite nuclear droplets surface modes are important in
addition to the compressional modes. To our knowledge
such modes (viscous fingering) have been studied first by
Nemeth et al. [44] for heated nuclei at normal matter den-
sity. However, since their surface modes are tied to the
expansion mode, these instabilities are driven by the ex-
pansion. To some extent surface instabilities have been
studied recently also in [27–30]. Our results on pure sur-
face modes show some interesting features.

– The instability region of pure surface modes extends to
larger densities up to about the spinodal line of infinite
nuclear matter and to large temperatures.

– In general the growth times are smaller by half an order
of magnitude as compared to the typical values for bulk
instabilities.

– In the stable region surface modes are slow, such that
deformations initiated in the excitation process will
persist during expansion and clustering.

– The surface instability is dominated by quadrupole de-
formation. Fission at high excitation energies is ex-
pected to take this path through a low density stage,
where the fission barrier vanishes. This is a novel mech-
anism of fission and may be even faster than the stan-
dard path across the barrier at equilibrium density.

In the following section 2 we introduce the collective
model, which serves as the basis for our studies of sta-
bility and instability of nuclear droplets. In section 3 we
describe the application to adiabatic isoscalar modes of



W. Nörenberg et al.: Stability and instability of a hot and dilute nuclear droplet I. 329

compressional and pure surface deformations. Results on
stability and instability of expanding nuclear droplets are
presented in section 4. Relations to multifragmentation
are discussed in section 5. Details of derivations and eval-
uations are given in the Appendix.

2 The collective model

We apply the diabatic approach to dissipative collective
motion [32–34]. In contradistinction to adiabatic models,
dynamical distortions of the Fermi sphere are included and
dissipation due to two-body collisions give rise to a term
in the collective equation of motion, which is non-local in
time (non-Markovian friction).

2.1 Reminder of the diabatic approach

If we introduce a set g ≡ {gλ} of collective variables gλ(t)
in the irrotational velocity field

v(r, t) = ∇W (r,g, ġ) =
∑

λ

ġλ ∇wλ(r,g) (1)

of collective motion, we can rigorously define (stationary)
diabatic single-particle states |φ̃α(g)〉 by

∂

∂gλ
|φ̃α(g)〉 = −1

2
{(∇wλ) · ∇+∇ · (∇wλ)}|φ̃α(g)〉, (2)

i.e. by an infinitesimal unitary transformation, which de-
forms the wave function in accordance with the velocity
field (cf. Appendix A). We search for the solution |Ψ(t)〉
of the many-body Schrödinger equation by expanding

|Ψ(t)〉 =
∑

ν

cν(t) |Ψν(g, ġ, t)〉 (3)

in terms of Slater determinants |Ψν〉, which are built from
the boosted diabatic single-particle states

|ψ̃α〉 ≡ exp
{

i

�

[
mNW (g, ġ)−

∫ t

t0

dt′ εα(t′)
]}

|φ̃α(g)〉
(4)

moving with the velocity field v. Here, εα and mN denote
the diabatic single-particle energies and the nucleon mass,
respectively.

From the variational principle

δcν ,gλ

∫ t1

t0

dt 〈Ψ(t)|i� ∂

∂t
−H|Ψ(t)〉 = 0 (5)

with the many-body Hamiltonian H, one derives equa-
tions of motion for the expansion coefficients cν(t) and
collective variables gλ(t). The coupled equations for the
expansion coefficients describe the mixing of states (es-
sentially due to residual interactions), and hence the equi-
libration process within the intrinsic degrees of freedom.

We approximate this equilibration by a relaxation equa-
tion for the diabatic single-particle occupation probabili-
ties

dnα(t)
dt

= − 1
τ(t)

{nα(t)− nα(g, µ, T )}, (6)

where τ and nα, respectively, denote the relaxation time
and the equilibrium values of the occupation probabilities.
The chemical potential µ(t) and the temperature T (t) in
the Fermi distribution for nα are determined by the con-
servation of mass and excitation energy in the relaxation
process. The relaxation time τ has been estimated for nor-
mal nuclear matter by several groups, cf. [45], and given
as

τ

�
=

η

ε∗
(7)

with values for η between 0.15 and 0.30 depending on
the magnitude of the nucleon-nucleon cross-section in
medium.

The collective equation of motion, as obtained from
the variation (5) with respect to qλ, is given by [46]

d
dt

∑
λλ′

Bλλ′ ġλ′ − 1
2

∑
λ′λ′′

dBλ′λ′′

dgλ
ġλ′ ġλ′′ = Fλ , (8)

where Bλλ′ denotes the collective mass tensor

Bλλ′ = mN

∫
d3r �̃(r)(∇wλ) · (∇wλ′) (9)

for the velocity field (1) and the density

�̃(r) =
∑
α

nα|φ̃α(r)|2 . (10)

The force on the r.h.s. of (8) is determined by

Fλ = −
∑
α

∂εα(g)
∂gλ

nα(t) (11)

in the diabatic representation. Note that the diabatic
single-particle energies are smooth functions of g and that
the force is defined for fixed nα, i.e. for constant (single-
particle) entropy.

Inserting in (11) the formal integral of (6)

nα(t) = nα(t)−
∫ t

t0

dt′
dnα

dt′
e−

∫ t
t′ dt′′/τ(t′′) (12)

with the initial value nα(t0) = nα(t0), we obtain

Fλ(g, t) = Fλ(g, t) + F ′
λ(g, t) , (13)

Fλ(g, t) = −
∑
α

∂εα(g)
∂gλ

nα , (14)

F ′
λ(g, t) =

∑
α

∂εα(g)
∂gλ

∫ t

t0

dt′
dnα

dt′
e−

∫ t
t′ dt′′/τ(t′′). (15)
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The equilibrium force is determined by the equilibrium
distribution nα(t) for the time-dependent temperature
and chemical potential. For temperatures (T ≈ 1 MeV)
large compared to the residual single-particle coupling,
i.e. difference between the total mean field potential (adia-
batic potential) and the diabatic potential, Fλ is identical
to the adiabatic force, because the sum of neighboring en-
ergies is the same in both cases (invariance of trace). The
elastoplastic force F ′

λ describes giant elastic vibrations
with frequency ω for τ � ω−1 and Markov dissipation
(ordinary friction) for τ � ω−1. Whereas large-amplitude
collective motion has been considered in [32–34], we spec-
ify the following discussion to small amplitudes.

2.2 Small-amplitude modes

For small amplitudes around some equilibrium point g0=0
we keep in (8) only terms linear in gλ, and hence we have

∑
λ′

Bλλ′ g̈λ′ + C ′
λλ′

∫ t

t0

dt′ e−(t−t′)/τ ġλ′(t′) + Cλλ′ gλ′ = 0

(16)

with Bλλ′ = Bλλ′(g0), τ = τ(t0) and the stiffness tensors

Cλλ′ =
∑
α

(
∂2εα

∂gλ∂gλ′
nα +

∂εα

∂gλ

∂nα

∂gλ′

)
g=0

, (17)

C ′
λλ′ = −

∑
α

(
∂εα

∂gλ

∂nα

∂gλ′

)
g=0

. (18)

Inserting gλ ∝ exp(−iωt), we obtain from (16) the eigen-
value equation

G−1
λλ′(ω) = −Bλλ′ ω2 + C ′

λλ′
ω

ω + i/τ
+ Cλλ′ = 0 (19)

for t − t0 � τ , where Gλλ′(ω) denotes the Fourier trans-
form of the Green function for (16). In general, i.e. for
finite τ -values, there are three complex solutions to this
equation. For the two elastic (isentropic) limits, τ = 0
(adiabatic limit) and τ → ∞ (diabatic limit) only two,
either real (ω2 > 0) or imaginary (ω2 < 0) frequencies
survive. In the diabatic limit the stiffness tensor is given
by

Cλλ′ = C ′
λλ′ + Cλλ′ =

∑
α

(
∂2εα

∂gλ∂gλ′

)
g=0

nα , (20)

whereas it is Cλλ′ in the adiabatic limit. As mentioned
below (15) the adiabatic stiffness tensor can be expressed
for temperatures T � 1 MeV by

Cλλ′ =
∑
α

(
∂2εα

∂gλ∂gλ′

)
g=0

nα , (21)

where α denote the adiabatic single-particle states.

2.3 Local-density approximation

In applying the formulation to the modes of a spherical
nuclear droplet of homogeneous density � and temperature
T inside the sharp surface, we perform a local density
approximation. The mass tensor (9) is already given in an
appropriate form. For the stiffness tensors (20) and (21)
we make use of the relation∑

α

∂εα

∂gλ
nα =

∑
α

∂tαα

∂gλ
nα +

∂

∂gλ

1
2

∑
αβ

vas
αβαβ nβnα

=
∂

∂gλ
(Ekin(g) + Eint(g)) , (22)

where tαα and vas
αβαβ denote the kinetic-energy part of

the single-particle energy and the antisymmetrized two-
body interaction matrix element, respectively. The total
intrinsic kinetic energy Ekin(g) and the interaction en-
ergy Eint(g) can be expressed by Skyrme functionals ε[�̃]
for the energy density, where �̃ denotes the deformed den-
sity due to collective motion. Furthermore, we introduce a
phenomenological surface energy tension εS(�̃). Then the
stiffness tensors are defined by

Cλλ′ =
{

∂2

∂gλ∂gλ′

[∫
d3r ε[�̃] +

∫
df εS(�̃)

]}
g=0

, (23)

Cλλ′ =
{

∂2

∂gλ∂gλ′

[∫
d3r ε[�̃] +

∫
df εS(�̃)

]}
g=0

(24)

in the local density approximation, where ε differs from
the adiabatic value ε by the additional deformation of the
local Fermi sphere in the diabatic limit. Note that the
derivatives in (23) and (24) have to be taken at constant
entropy, i.e. for fixed occupation probabilities in accor-
dance with (20) and (21).

2.4 Energy densities and surface tension

We write the Skyrme energy-density functional [47] as a
sum

ε[�̃] = ετ + εV + εW + εC (25)

of terms related to the intrinsic kinetic energy (ετ ), includ-
ing the momentum-dependent part of the interaction, the
nuclear interaction of homogeneous systems (εV ), the con-
tribution from inhomogeneity (Weizsäcker term εW ) and
the Coulomb interaction (εC). Explicitly these terms read

ετ = ε(n)
τ + ε(p)

τ , (26)

ε(i)τ = g

∫
d3k

(2π)3
�

2k2

2m∗
i

f̃i(k) , (27)

εV =
1
2
t0

[
(1 +

1
2
x0)�̃2 − (x0 +

1
2
)(�̃2

n + �̃2
p)

]
(28)

+
1
12

t3�̃
α

[
(1 +

1
2
x3)�̃2 − (x3 +

1
2
)(�̃2

n + �̃2
p)

]
,
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εW =
1
16

(3t1 − t2)(∇�̃)2 (29)

+
1
32

(3t1 + t2)
[
(∇�̃n)2 + (∇�̃p)2

]
,

εC =
1
2

∫
d3r′

e2
0 �̃p(r)�̃p(r′)
|r − r′| , (30)

where g = 2 is the spin degeneracy factor, f̃i(k) denote the
local momentum distributions (normalized to density) for
neutrons (i = n) and protons (i = p) inside the droplet
and m∗

i the corresponding effective masses given by

2�2

m∗
i

=
2�2

mN
+ [(t1 + t2)�̃+

1
2
(t2 − t1)�̃i] . (31)

Note that the r-dependence in eqs. (26-29) and (31) is not
explicitly indicated.

Two Skyrme forces SkM∗ and SIII are considered,
which correspond to soft and stiff equations of state, re-
spectively. The parameters are given in Table 1.

Table 1. Parameters of SIII and SkM∗ Skyrme forces

SIII SkM∗

t0 (MeV fm3) −1128.75 −2645
t1 (MeV fm5) 395 410
t2 (MeV fm5) −95 −135
t3 (MeV fm3(1+α)) 14000 15595
x0 0.45 0.09
x3 1 0
α 1 1/6

The surface energy is directly determined from the sur-
face tension (cf. Appendix B and [49,50])

εS(�̃) =
as

4πr2
0

(
�̃

�eq

)2

(1− aδξ
2) (1 + βT 2) , (32)

where as = 17 MeV, r0 = 1.2 fm, aδ = (3t1 + t2)/(9t1 −
5t2), ξ = (N − Z)/A and β = 0.006 MeV−2 or 0.008
MeV−2 for the soft and stiff EOS, respectively. Here, �eq

denotes the equilibrium nuclear density of the homoge-
neous nuclear droplet. For not too light nuclei the value is
�eq ≈ 0.85 �0 with �0 = 0.16 fm−3.

3 Adiabatic isoscalar modes

In the adiabatic limit (τ = 0) the eigenvalue equation (19)
reduces to

Cλλ′ − ω2 Bλλ′ = 0 (33)

with the adiabatic stiffness tensor given by (24) in the
local-density approximation. For ω2 > 0 the correspond-
ing mode is stable (qλ ∝ sin(ωt)). For ω2 = −γ2 < 0

the mode is unstable, i.e. a small fluctuation leads to an
exponential growth of the amplitude (qλ ∝ exp(γt)).

Since we are restricting now our study to isoscalar
modes, the neutron and proton densities are given by
�̃n = �̃ N/A and �̃p = �̃ Z/A with A = N + Z.

In the following we treat the compressional modes and
the pure surface modes separately.

3.1 Compressional modes

Collective variables are introduced by the coefficients of
the expansion of an irrotational displacement field in
terms of a complete set of functions. Analytical expres-
sions are derived for the mass and stiffness tensors.

3.1.1 Collective variables

We define a set of real functions for r ≤ R

χλ(r,Ω) = Nnl jl(κnlr)Ym
l (Ω) (34)

with λ ≡ {nlm}. Here, jl(κnlr) denote the spherical Bessel
functions and Ym

l (Ω) real spherical harmonics defined
from the complex ones Y µ

l (Ω) by

Ym
l =

{√
m

2|m| [Y
|m|
l + m

|m|Y
|m|
l

∗
], for m �= 0 ,

Y 0
l , for m = 0 ,

(35)

with the boundary condition

χλ(r = R,Ω) = jl(κnlR) = 0 (36)

(n = 0, 1, 2, . . . ) and the normalization constant

Nnl =

√
2
R3

1
j′l(κnlR)

=

√
2
R3

1
jl−1(κnlR)

. (37)

The basis (34) forms a complete set of orthonormal func-
tions within r ≤ R satisfying

∆χλ = −κ2
nl χλ , (38)

∫
d3r χλ(r)χλ′(r) = δλ λ′ . (39)

Deformations of the spherical droplet with homoge-
nous density � and radius R are conveniently described by
a displacement field s(r, t). We introduce collective vari-
ables by the expansion coefficients qλ(t) of the displace-
ment potential

w(r, t) =
∑

λ

qλ(t)χλ(r) (40)

and the corresponding irrotational displacement field

s(r, t) = ∇w(r, t) =
∑

λ

qλ(t)∇χλ(r) . (41)
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Fig. 1. Density distributions (cut in the (x, y)–plane) of a
droplet for the lowest collective modes with n = 0 and 1 (left
and right column, respectively) and l = 1 to 4 (from top to
bottom). Darker shades correspond to larger densities, lighter
ones to smaller densities. The grey color in the center and at the
border corresponds to the density of the undistorted sphere.

Note that qλ has the dimension of (length)7/2. The time
derivative

ṡ(r, t) =
∑

λ

q̇λ(t)∇χλ(r) (42)

determines the velocity field v at the position r + s(r, t).
This shift s(r, t) makes our expansion different from the
one for the irrotational velocity field (1), which is com-
monly used (cf. [35]). However, for s = 0 we have ṡ = v(r),
and hence all terms in (4), (5), (8) and (9), which are re-
lated to the collective kinetic energy, remain unchanged.
Since for small amplitudes Bλλ′ = Bλλ′(q0 = 0), the ki-

netic energy part in (16) is not affected by the difference
in the expansion. Of course, the stiffness coefficients are
different due to the difference in the displacement fields.
We have chosen the irrotational displacement field (41),
because it conserves the center of mass exactly for all l-
values including l = 1 (cf. Appendix A.2), and furthermore
allows to calculate mass and stiffness tensors analytically.

The density �̃(r, t) varies according to the continuity
equation

∂�̃(r, t)
∂t

+ div[�̃(r, t)v(r, t)] = 0 , (43)

which assures mass conservation. Figure 1 illustrates
shapes and density profiles (calculated from eq. (A.12)
of Appendix A.3) for the lowest collective modes with
n = 0, 1 and l = 1, 2, 3, 4. Since we want to describe the
fragmentation into at least two large fragments, we restrict
the expansion (40) to l ≥ 2. Instabilities with l = 0 and
l = 1 are expected to lead essentially to a single heavy
fragment with additional light particles (n, p, d, α . . . ),
and hence can not be easily distinguished from evapora-
tion events.

As discussed in Appendix A.3, the homogeneous
sphere (q = 0) is an equilibrium point in the space of
the collective variables qλ for l > 0, and hence (16) with
gλ → qλ describes its harmonic modes.

3.1.2 Mass tensor

The mass (inertial) tensor Bλλ′ is calculated from the col-
lective kinetic energy tensor. Every mass elementmN�d3r
of the unperturbed droplet contributes 1

2mN�d3r[ṡ(r, t)]2
to the kinetic energy (cf. (A.8)), where mN denotes the
nucleon mass and � the constant value of the density in-
side the unperturbed sphere of radius R. Inserting the
expansion (42) for ṡ(r, t) we obtain for the inertial tensor

Bλλ′ = mN �

∫
r≤R

d3r (∇χλ) · (∇χλ′)

= δλλ′ mN � κ2
nl (44)

according to the definition (9), where the final expression
is diagonal and results from integrating by parts and using
(36) and (38).

3.1.3 Stiffness tensor

According to the different energy contributions (intrin-
sic kinetic energy, local and nonlocal nuclear interaction,
Coulomb and surface energies, cf. sect. 2.4), the adiabatic
stiffness tensor

Cλλ′ = C
(τ)

λλ′ + C
(V )
λλ′ + C

(W )
λλ′ + C

(C)
λλ′ + C

(S)
λλ′ (45)

is the sum of five terms. The derivation of explicit formulae
for the individual terms is straightforward. We refer to
Appendix C for details.
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The intrinsic kinetic energy term C
(τ)

λλ′ is calculated in
the adiabatic limit, which is defined by leaving the occu-
pation of the lowest single-particle levels unchanged. The
final expression is

C
(τ)

λλ′ =
∑

i=n,p

2ε(i)τ (�, T )
{(

5
9
+

5
3
µ(i)

)
κ4

nl δλλ′

−
(
4
3
+ 2µ(i)

)
κnlκn′l

R2
δll′δmm′

}
(46)

with

µ(i) = �m∗
i (�)

d
d�

1
m∗

i (�)
. (47)

The kinetic energy density ε
(i)
τ (�, T ) is defined by (27) and

may be approximated by

ε(i)τ (�, T ) ≈ ε(i)τ (�, 0) (1 + αT 2) (48)

with

ε(i)τ (�, 0) =
3
20

(3π2)2/3 �
2 �

5/3
i

m∗
i (�)

, (49)

α =
5
3

(
1
9π

)2/3 (
m∗

i (�)
�2

)2

�
−4/3
i (50)

for not too large temperatures (T � ε
(i)
F ), cf. [48]. The

results, reported in sect. 4 have been obtained by using
the exact expression (27). Since (κnlR)2 � 1, the first
(diagonal) term is the largest contribution in (46).

The contribution from the nuclear-interaction density
εV is obtained as

C
(V )
λλ′ = �2 d

2εV

d�2
κ4

nl δλλ′ (51)

−
{
�
dεV

d�
− εV (�)

}
4κnlκn′l

R2
δll′δmm′ .

The contributions from the Weizsäcker and Coulomb
terms of the energy density are diagonal and read

C
(W )
λλ′ =

d2εW

d(∇�)2
�2 κ6

nl δλλ′ , (52)

C
(C)
λλ′ =

8π
3

e2
0

(
Z

A
�

)2

κ2
nl δλλ′ , (53)

where e0, Z and A denote the elementary charge and the
charge and mass numbers of the nucleus, respectively.

For the surface energy contribution to the stiffness ten-
sor we find

C
(S)
λλ′ = 4εS(�)

{
9 +

1
2
l(l + 1)

}
κnlκn′l

R3
δll′δmm′ . (54)

The stiffness tensor, as given by expressions (46),(47) and
(51) to (54), is diagonal in l and m and not depending
on m. The only couplings left are those corresponding to
different n values for the same multipolarity and are due
to C

(τ)

λλ′ , C
(V )
λλ′ and C

(S)
λλ′ .
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Fig. 2. Borders of compressional adiabatic spinodal instabil-
ities in the (	, T )-plane for infinite symmetric nuclear matter
(A=∞, heavy solid line), gold-like (A=197, Z=79, N=118,
dashed line) and tin-like (A=100, Z=N=50, dotted line) nu-
clear droplets for a soft EOS (SkM∗). Here, 	0 = 0.16 fm−3 is
the normal nuclear matter density. Note that finite nuclei have
central densities around 0.85	0. The thin dashed lines indicate
the expansion trajectories in the (	, T )-plane at constant en-
tropy T ∝ 	2/3/m∗(	) for infinite nuclear matter.

3.1.4 Infinite nuclear matter

The relation to thermodynamic properties of infinite nu-
clear matter is obtained by discarding Coulomb interac-
tions and by taking the limit R → ∞. Then C(C) and
C(S) are negligible and κnl → κ is no longer restricted by
(36) to discrete values. For any finite κ we have κR → ∞,
and hence

Cλλ′ = (c1 + c2 κ
2)κ4 δλλ′ (55)

with

c1 = �

(
d2ε

d�2

)
, c2 = �2

(
d2εW

d(∇�)2

)
, (56)

ε denoting the sum of the adiabatic kinetic and interac-
tion energies. The eigenvalues are given by the dispersion
relation

ω2 = Cλλ′/Bλλ = κ2(c1 + c2 κ
2)/(mN�) , (57)

a well-known result in infinite matter (cf. [51]). In the
adiabatic spinodal regime, i.e. in the (�, T )-plane, where
c1 = �(d2ε/d�2) < 0, unstable modes with ω2 < 0 ex-
ist according to (57) for finite values of κ up to a critical
value κcrit =

√−c1/c2. The border of the spinodal regime
is determined by κcrit = 0, i.e. c1 = 0. At this point we im-
mediately understand the large reduction of the spinodal
region for finite systems (cf. fig. 2) by the finite values for
the smallest κnl determined by (36).
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Fig. 3. Contributions from the different terms (cf. eq. (45))
to the diagonal element of B−1C with l = 2, n = 0 for a hot
(T = 4 MeV) Au-like droplet (Z, A = 79, 197) described by
a soft EOS (SkM∗). Also shown is the lowest eigenvalue ω2,
which differs from C/B due to couplings with modes n > 0.

3.2 Pure surface modes

Pure surface modes, without any change of density inside,
cannot be described by the expansion (41) for the displace-
ment field s. Instead, one has to use an expansion for the
velocity field v satisfying ∇·v = 0, such that the continu-
ity equation (43) yields ∂�̃/∂t = 0 if �̃ = � = const inside,
initially. This problem is well studied and we essentially
quote the results from [35].

3.2.1 Collective variables

It is convenient to introduce real collective variables Qlm,
which describe the surface r(Ω) of the deformed droplet
by the expansion

r(Ω, t) = R

(
1 +

∑
lm

QlmYm
l (Ω)

)
, (58)

where we use the real spherical harmonics (35) instead
of the complex Y m

l (Ω). The corresponding velocity field,
which satisfies ∇ · v = 0, is defined by vr = ṙ at the
undeformed surface, and hence by the irrotational field

v(r, t) =
∑
lm

Q̇lm

l Rl−2
∇(rlYm

l ) . (59)

3.2.2 Mass tensor

The collective mass tensor is obtained from (44) by a par-
tial integration, using∆(rlYm

l ) = 0 and the Gauss integral

Fig. 4. The same as in fig. 3, but for a stiff EOS (SIII).

formula. This yields the expression

Blm,l′m′ = δll′δmm′ mN�
R5

l
, (60)

where the Q-dependence is neglected (harmonic or small-
amplitude approximation).

3.2.3 Stiffness tensor

Since the density remains constant during the surface de-
formations, only the surface and Coulomb energies con-
tribute to the stiffness tensor, i.e.

Clm,l′m′ = C
(S)
lm,l′m′ + C

(C)
lm,l′m′ . (61)

In applying the expressions of [35] we note that

αlm =
1√
2
(Qlm + iQl−m) , (62)

and hence
∑

m |αlm|2+ |αl−m|2 = ∑
m Q2

lm+Q2
l−m. Thus,

also the stiffness tensors have to be equal to those of [35],

C
(S)
lm,l′m′ = δll′δmm′

(l − 1)(l + 2)
4π

asA
2/3 , (63)

C
(C)
lm,l′m′ = −δll′δmm′

3
2π

l − 1
2l + 1

e0

r0
Z2 A−1/3 , (64)

which are diagonal and independent of m like the mass
tensor.



W. Nörenberg et al.: Stability and instability of a hot and dilute nuclear droplet I. 335

-0.002

-0.001

0

0.001

0.002

0 0.1 0.2 0.3 0.4 0.5

ω
2  (

c
2
/fm

2
)

ρ/ρ0

n=0

n=1

n=2
n=3

n=4

Fig. 5. Eigenvalues ω2 for different compressional modes of
quadrupole oscillations (l = 2) as functions of density at tem-
perature T = 3 MeV. Results for a gold-like droplet described
by a soft EOS (SkM∗) are presented. The diagonal contribu-
tions are displayed as thin lines, while the heavy lines represent
the results obtained by diagonalization.

4 Results on stability and instability

According to (33) the eigenmode frequencies are obtained
by a numerical diagonalization of the matrix B−1C. We
present detailed results on stability and instability of bulk
and surface modes as functions of � and T . The calcula-
tions have been performed with the Skyrme energy den-
sities, SkM∗ and SIII (cf. Table 1), implying soft and stiff
equations of state (EOS), respectively. We present here
mainly the results for the soft equation of state (SkM∗),
because it is favored e.g. by the study of monopole vibra-
tions and supernova explosions.

4.1 Compressional (bulk) modes

The results on compressional modes are presented in figs.
2–7.

4.1.1 Finite-size effects

In fig. 2 we illustrate effects of finite size on the region of
instability in the (�, T )-plane, where � and T denote the
density and temperature of the homogeneous droplet. As
discussed in sect. 3.1.4, the spinodal line for infinite nu-
clear matter is determined by d2ε/d�2 = 0 and is shown by
the heavy solid line. For finite nuclei the spinodal regime
is considerably reduced as shown for the gold- and tin-like
nuclear droplets with Z,A = 79, 197 and 50, 100, respec-
tively. The spinodal line is determined by the l = 2 modes,
as will be discussed below.

Fig. 6. Lowest eigenvalues ω2 for the multipoles l = 2, 3, 4, 5
as functions of density at temperature T = 3 MeV. Results for
a gold-like droplet are presented for the soft EOS. Note that
the line for l = 2 is the lowest eigenvalue ω2 shown as heavy
line in fig. 5.

4.1.2 Main contributions

Figure 3 shows quantitatively the importance of different
contributions to the lowest eigenvalue ω2 as function of
the density for l = 2 at a temperature of 4 MeV. The
eigenvalues are determined essentially only by the terms
C(τ), C(V ) and C(W ), which are due to the intrinsic ki-
netic energy and the nuclear interaction parts εV and εW .
The contributions from Coulomb interactions and surface
energy are negligible, which is well known for compres-
sion modes [35]. Figure 3 also reveals that the additional
Weizsäcker contribution is the main reason for the re-
duction of the spinodal region in the finite systems, cf.
the discussion at the end of sect. 3.1.4. Since κnl = 0
on the spinodal line of an infinite system (R → ∞), the
Weizsäcker term does not contribute. The difference be-
tween the spinodal lines for A = 100 and A = 197 is only
marginal, because R ∝ A1/3 and κnl ∝ A−1/3.

Figure 4 illustrates how the contributions to ω2 change
for the stiff EOS. The results are similar to those for the
soft EOS, but with larger instability inside the spinodal
region and larger stability outside.

4.1.3 Dependence on n and l

With decreasing densities and temperatures more and mo-
re modes with n > 0 become unstable for the same mul-
tipolarity l. This feature is illustrated in fig. 5, where the
eigenvalues ω2 of the lowest modes for a gold-like system
are displayed as functions of � at T = 3 MeV. Effects of
coupling between different n-modes are clearly seen near
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Fig. 7. Lowest vibrational energies �ω (in MeV) in the stable
(white) region and largest growth rate γ = �

√−ω2 (in MeV)
in the unstable (shaded) region as functions of 	 and T for a
gold-like droplet described by a soft EOS (SkM∗). All modes
with l = 2, 3, 4, 5 and n = 0, 1, 2, 3, 4, 5 are taken into account.
To obtain the growth time �/γ in fm/c one has to divide 197
by the γ value given in the shaded area.

the crossings of the diagonal contributions. Such a behav-
ior is typical for all multipole modes as well as for the soft
and stiff EOS.

Figure 6 illustrates the lowest eigenvalues ω2 for differ-
ent multipolarities (l = 2, 3, 4, 5). With decreasing density
below 0.3�0 all eigenvalues for the different l-values be-
come degenerate. This means that all multipole distortions
have the same growth rate. Note that also the eigenvalues
for different n-values become degenerate in this range of
densities (cf. [27,28]). As is discussed in sect. 5.2, such a
feature can be responsible for a power law in the fragment-
mass distribution of multifragmentation.

4.1.4 Dependence on � and T

Figure 7 shows the lowest eigenvalues ω2 as functions of
� and T for a gold-like droplet described by a soft EOS
(SkM∗). For convenience the numbers on the contour lines
are not the ω2-values but the vibration energies in the sta-
ble region and the growth rates in the unstable region. The
stable vibration �ω = 28 MeV of gold at T = 0 is con-
siderably larger than the quadrupole energy (20.6 MeV)
given in [35], the difference being due to the additional
Weizsäcker term in our calculations. The spinodal line for
A = 197 of fig. 2 is identical with the 0-line in fig. 7. We
note in passing that the inclusion of l = 1 and l = 0 modes
gives only a marginal increase of the region of instability.
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Fig. 8. Contour plot of stability and instability for the surface
modes of a gold-like droplet in the (	, T )-plane. Conventions
of presentation are the same as in fig. 7.

4.2 Surface modes

The results are summarized in fig. 8. In contradistinc-
tion to fig. 7 for the compression modes the borderline
between stability and instability for the surface modes is
located at considerably larger densities near the spinodal
line of infinite nuclear matter (by accident probably) and
extends to high temperatures. This behavior is due to the
softening of the surface tension with decreasing density
and the weak temperature dependence. Thus, there is a
wide region for large densities and temperatures, where
the system becomes unstable with respect to surface de-
formations while being stable for compressional modes.
However, the magnitudes of growth rates and vibrational
energies of the surface modes are smaller by about half
an order of magnitude as compared to the values for the
compression modes. Note that the quadrupole mode is by
far most unstable as seen from the l-dependence of the
stiffness tensors (63) and (64).

4.3 Combined plot of bulk and surface modes

A combined contour plot of compression and surface insta-
bilities is presented in fig. 9. Compression instabilities are
dominant at small densities and temperatures, while for
large temperatures and densities only the surface modes
are unstable.

4.3.1 Dependence on size

Figure 10 illustrates the regions of stability and instability
for a tin-like droplet. As already shown in fig. 2, the com-
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Fig. 9. Combined bulk and surface instabilities (soft EOS) for
a gold-like droplet. Shown are the largest growth rates and the
lowest vibrational energies. Conventions of presentation are the
same as in fig. 7.
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Fig. 10. The same as in fig. 9, but for tin-like droplet.

pression instabilities of finite nuclear droplets depend only
weakly on their masses A. The depth of the compression
instability hole (dark regions) remains almost the same for
the gold- and tin-like droplets. However, due to the sen-
sitive balance between Coulomb and surface energies, the
surface instabilities are pushed towards smaller densities
for the lighter system.
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Fig. 11. The same as in fig. 9 but for a stiff EOS .

4.3.2 Dependence on EOS

For the same mass of the droplet the regions of instabil-
ity depend on the EOS. Figure 11 displays the combined
instabilities for the gold-like droplet and a stiff EOS. Com-
paring the plot with fig. 9 we realize that the compression
instabilities extend to higher temperatures for the stiff
EOS (up to 8 MeV, as compared to about 6 MeV for the
soft EOS) and to somewhat larger densities. In addition,
the depth of the compression instability hole is substan-
tially larger for the stiff EOS. The values for the growth
rates reported for � = 0.37�0, T = 0 in [27], � = 0.3�0,
T = 3 MeV in [29] and � = 0.3�0, T = 6 MeV in [30] are
consistent with the values in the contour plot of fig. 11.

5 Instabilities and multifragmentation

As compared to infinite nuclear matter the spinodal region
of the bulk (compression) instabilities is significantly re-
duced in finite systems (cf. fig. 2). However, finite systems
exhibit additional modes due to the surface. Surface in-
stabilities arise in finite systems already below �/�0 ≈ 0.6
and extend to high excitation energies of the system (cf.
fig. 8) for A ≈ 200. Therefore in addition to bulk in-
stabilities, surface instabilities become important in mul-
tifragmentation reactions. A heated nuclear droplet ex-
pands essentially at constant entropy (cf. fig. 2, [52]), and
hence experiences, with increasing initial excitation en-
ergy, first surface instabilities and then bulk instabilities.
When reaching the spinodal regime the temperatures are
of the order of about 5 MeV. In the following we discuss
possible effects from surface and bulk instabilities, which
become important during the expansion of the hot pieces
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of nuclear matter formed initially in fragmentation reac-
tions.

5.1 Effects from surface instabilities

Hot spherical nuclei are formed initially most likely in
high-energy target and projectile fragmentation reactions,
as well as in bombardments of heavy nuclei with light
particles (p, d, α, . . . ). If such hot nuclei are formed with
excitation energies in the range 2.5 MeV � E∗/A � 5
MeV (6 MeV� T � 9 MeV) we expect [52] expansion into
spinodal region of surface instabilities. Since quadrupole
deformations (l = 2) are by far the most unstable surface
modes (cf. eqs. (63),(64)), partition into two fragments of
almost equal size (Af ≈ A/2) is most likely. This type of
fragmentation differs qualitatively from the normal fission
mechanism, because it happens at low densities, where no
barrier is present any more.

In central collisions of (almost) equal nuclei at bom-
barding energies � 100 MeV/u one expects large dynam-
ical distortions of the nuclear matter [53]. Because of the
large times which are necessary to restore spherical sym-
metry (according to fig. 8 these times are of the order
of (100–200) fm/c), the deformed hot matter will expand
(typical time 30 fm/c) into the instability regime and frag-
ment by pure surface instability plus dynamical collective
motion or by additional bulk instabilities.

5.2 Effects from bulk (compressional) instabilities

For hot spherical nuclei formed at excitation energies
E∗/A � 5 MeV (T � 9 MeV) we expect [52] expansion
into the spinodal regime of bulk instabilities. Near the
spinodal line (of bulk instabilities, cf. fig. 6) quadrupole
instabilities are most likely to develop. However, as one
proceeds in reaching smaller densities modes with larger
l-values and also larger n-values (cf. fig. 5 and 6) become
unstable, reaching equal growth times for �/�0 � 0.25.

This feature leads naturally to a power law in the
fragment mass distribution. In an instability mode, which
leads to m fragments, one produces fragments with mass
Af = A/m with probability

Pm(A/m) ∝ m2 , (65)

where the second factor m is due to the degeneracy of this
mode. Since m = A/Af we find

P (Af ) ∝ A−2
f (66)

for the fragment mass distribution. Of course, such a be-
havior can only be expected for m > 2, and hence Af well
below A/2. We stress that the power-law behavior (66) is
due only to the degeneracy of growth times for different
modes n, l, and not related to the critical point.

5.3 General aspects of fragment-mass distributions

According to expansion and instabilities of spherical drop-
lets we expect the following qualitative features for the
fragment-mass distribution with two or more heavy frag-
ments.

– For low energies only fission-like fragmentation should
occur which give rise to a bump around Af � A/2 and
emitted light particles with an exponentially decreas-
ing mass distribution.

– For energies 5 MeV < E∗/A < 8 MeV, which lead to
expansion just into the spinodal region of bulk insta-
bilities, the fragmentation is governed by low l-values
(l = 1, 2, 3). According to fig. 1 large regions of low
densities are produced in the development of these low-
l instabilities. The subsequent fragmentation of these
will lead to a power-law behavior for light fragments in
addition to the heavy fragments and their evaporated
light particles.

– For energies 8 MeV < E∗/A < 12 MeV, which lead to
expansion well into the region of bulk instabilities for
densities �/�0 < 0.3, a pure power law with σ = 2.0 is
expected for the fragment mass distribution.

These properties of fragment-mass distributions are
well established by experiments, cf. [43]. The observed
larger values of σ for E∗/A > 12 MeV indicate that the
freeze-out of fragments is probably faster than allowed by
growth rates of instabilities, e.g. by a coalescence mecha-
nism.

5.4 Experimental prospects

It is not clear how those components of the multifragmen-
tation process can be identified, which are due to spin-
odal decomposition. A possible strategy is to analyze the
data event by event and to look for characteristic modes
as function of initial excitation energy [29,54]. An indica-
tion for spinodal decomposition has been reported recently
[31].

Of course, one should look particularly into fragmenta-
tion reactions, which are favorable for spinodal decompo-
sition occurring in large dilute spherical droplets. As men-
tioned earlier in sect. 5.1, central heavy-ion collisions ex-
hibit violent collective deformations, and hence will have
complicated dynamics, which may mask the spinodal de-
composition phenomena.

In projectile and target fragmentation at high bom-
barding energies the excitation by abrasion yields excited
spectators without large dynamical distortion. Thus we
can expect that a large fraction in the multifragmentation
process is due to spinodal decomposition after expansion.
However, induced by the abrasion process, certain parts
of projectile and target will be emitted initially before
expansion. This component, which may contribute of or-
der 10% to the fragment yield, is characterized by con-
siderably larger fragment kinetic energies. During the fast
expansion the number of emitted particles is small [52],
such that we expect only two relevant components, one
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from the initial excitation process and another one from
the break-up after expansion.

A recent analysis [55] of the decay of target spectators
in 197Au+197Au collisions at 1 GeV/u has indicated that
the fragments are already produced at the initial matter
densities. However, we would like to interpret the observed
fragment kinetic energy spectra as evidence for a high- and
low-energy component, which correspond to initial exci-
tation process and the break-up after expansion, respec-
tively. Such a picture is supported by the decrease of the
He-Li temperatures from (10–12) MeV in the high-energy
tails to about 5 MeV in the low-energy part of the frag-
ment kinetic-energy distribution. The evolutionary char-
acter of the multifragmentation process from initial ex-
citation via expansion to the final break-up is supported
by the analysis of central 129Xe+natCu at 30 MeV/u [56],
light-ion induced fragmentation reactions [57] and colli-
sions with different projectile target combinations leading
to hot A ≈ 110 systems [58].

We gratefully acknowledge fruitful discussions with our exper-
imental colleagues U. Lynen, W. Trautmann and C. Schwarz.

Appendix A. The displacement
transformation

Displacement transformations have been frequently used
in the description of small-amplitude collective nuclear
motion [59–62]. With the introduction of the displacement
for wave functions in a differential form it was possible
to extend such descriptions to large-amplitude dissipative
collective motion, cf. sect. 2.1. Within this approach a
scaling condition (2) for the stationary part of the dia-
batic single-particle wave functions, written here as

∂

∂t
φ̃(r, t) = −1

2
[v(r, t) · ∇+∇ · v(r, t)] φ̃(r, t) , (A.1)

assures that all dynamical couplings linear in the veloc-
ities disappear in the Schrödinger equation for the time-
dependent wave function. Considering this equation (A.1)
at the time dependent point r′ = r + s(r, t) we find with
ṡ(r) = v(r+ s(r)) for the total derivative

d
dt

φ̃(r+ s(r, t), t) = φ̃(r+ s(r, t), t) (−1
2
∇′ · ṡ(r)) ,

(A.2)

where ∇′ denotes the gradient vector taken at the position
r′. After integration from t = 0, s = 0 to t, s(t)

φ̃(r+ s(r, t), t) = φ(r) exp{−1
2
∇′ · s(r, t)} , (A.3)

i.e. the value of the transformed wave function at the point
r′ = r+ s(r, t) is given by the original wave function φ(r)
at the point r normalized to ensure the unitarity of the
transformation as implied by the integrated eq. (A.1),

φ̃(r′, t) = exp{−1
2
[s(r, t) · ∇′ +∇′ · s(r, t)]} φ̃(r′, 0) .

(A.4)

Recently, similar unitary displacement transformations
have been successfully implemented in the treatment of
two-body correlations caused by realistic two-body inter-
actions [63].

Appendix A.1. Continuity equation, particle
conservation

Defining the total single-particle density by the sum over
all occupied states, we find as a consequence of (A.3)

�̃(r+ s(r, t), t) = �(r) e−(∇′·s(r,t)) , (A.5)

where �(r) is the density of the undistorted sphere. In
differential form this equation becomes (cf. (A.2))

d�̃(r′, t)
dt

= −�̃(r′, t)(∇′ · ṡ(r, t)) (A.6)

and, since ṡ(r, t) = v(r + s(r), t), we find the continuity
equation

d�̃(r′, t)
dt

+ �̃(r′, t) (∇ · v)r′ = 0 , (A.7)

which also results form (43) by considering the substantial
change of density d�̃(r′)/dt along the displacement path,
i.e. in the comoving frame.

Particle conservation implies

d3r′ �̃(r′) = d3r �(r) , (A.8)

which means, that the number of particles in a volume
element is conserved when followed in the distortion pro-
cess.

Appendix A.2. Conservation of the center of mass

The time derivative of the center of mass

d
dt

〈r〉 = 1
A

∫
d3r′ �̃(r′)v(r′, t) (A.9)

should vanish. This integral is rewritten as

d
dt

〈r〉 = 1
A

∫
d3r �(r) ṡ(r, t) , (A.10)

by using (A.8) and v(r′, t) = ṡ(r, t) with A and �(r) denot-
ing the mass number and the unperturbed density distri-
bution, respectively. This equation is understood by not-
ing that the mass element positioned at r for s = 0 con-
tributes for s �= 0 at the point r+ s(r, t) to the center of
mass. Since s is given by (41) we find by partial integration
of (A.10) that

d
dt

〈r〉 ∝
∑

λ

q̇λ χλ(R,Ω) = 0 , (A.11)

i.e. for every multipole distortion (even for l = 1) the
center of mass is conserved exactly.
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Appendix A.3. Second-order expansion of density

Expanding (A.5) to second order in s, we find

�̃(r+ s, t) = �(r) [(1−∇ · s+ 1
2
(∇ · s)2 − (∇′ −∇) · s] .

(A.12)

The last term can be rewritten in second order as

−(∇′ −∇) · s = 1
2

∑
i,j

(∂i∂j w)2 , (A.13)

where ∂i denotes the differentiation with respect to the
i’th cartesian component of r. From (38),(40) and (41) we
obtain

−∇ · s = −
∑

λ

qλ∆χλ =
∑

λ

qλ κ2
nl χλ . (A.14)

The integral
∫

r≤R
d3r∇ · s = 0, because the integral over

the single spherical harmonic in χλ vanishes for l > 0.
This property causes the first-order derivative of the total
energy of the spherical droplet to vanish, and hence the
spherical droplet is an equilibrium point with respect to
the displacement field.

For the derivatives of the density with respect to the
collective coordinates qλ we obtain the relations(

∂�̃

∂qλ

)
q=0

= �(r)κ2
nl χλ(r) (A.15)

and(
∂2�̃

∂qλ∂qλ′

)
q=0

= �(r) [κ2
nlκ

2
n′l′ χλ(r)χλ′(r) (A.16)

+
∑
i,j

(∂i∂jχλ)(∂i∂jχλ′)] ,

which frequently appear in the evaluation of the stiffness
tensor (cf. Appendix C).

Appendix B. Surface tension

The surface interaction energy ELD
S of a sphere with ra-

dius R is determined by the difference

ELD
S = EV + EW − ELD

V (B.1)

of the local and nonlocal interaction energies EV + EW

for the diffusive sphere and the interaction energy ELD
V

of the homogeneous sphere with the constant density � in
the interior (r < R).

Assuming a linear approximation

�̃(r, t) =
1
2
�

(
1− r −R

2a

)
for |r −R| ≤ 2a (B.2)

to the Fermi function for describing the transition of the
density from the inside to the outside (a denoting the dif-
fuseness parameter) we obtain for R � a (leptodermous
system)

EV − ELD
V = −4πR2 2

3
eV �2a , (B.3)

EW = 4πR2 1
4
eW

�2

a
. (B.4)

Here, the energy densities εV = eV �2(r, t) and εW =
eW (∇�)2 have been used. Dividing by the surface 4πR2,
we find the surface tension

εS = �2

(
−2
3
eV a(T ) +

1
4

eW

a(T )

)
, (B.5)

where a(T ) increases with increasing temperature. Ac-
cording to [64] a(T )/a(0)− 1 ∝ T 2, and hence

εS(�, T ) = εS(�eq, 0)
(

�

�eq

)2

(1 + βT 2) . (B.6)

Introducing the explicite form for εS(�eq, 0) with the
asymmetry dependence on neutron and proton numbers,
we finally obtain eq. (32) with the values β from [49,50].

Appendix C. Evaluation of the stiffness
tensor

The evaluation of the different contributions to the stiff-
ness tensor (45) is simplified by considering the displace-
ment of individual volume elements with the displacement
field s(r). Then according to (A.8), the integrals over the
distorted sphere can be replaced by integrals over the orig-
inal volume elements. In this way only integrals over the
original sphere of radius R have to be evaluated.

Appendix C.1. Intrinsic kinetic energy contribution

C
(τ)
λλ′

In the local-density approximation the intrinsic kinetic en-
ergy for protons or neutrons is given by

Eintr
kin =

∫
r≤R

d3r
�

2

2m∗(�̃)

∫
d3k f(k)k̃2 , (C.1)

where f(k) denotes the (isotropic) momentum distribu-
tion within the unperturbed droplet normalized to �.
Due to the distortion, the local momentum k transforms
to k̃. In the adiabatic limit the density dependence of
〈k̃2〉 ∝ �̃2/3 enters, and hence with the density (A.12)
at the displaced volume element we obtain

〈k̃2〉 = 〈k2〉{1− 2
3
∇ · s+ 7

18
(∇ · s)2 + 1

3

∑
i,j

(∂i∂j w)2}

(C.2)
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up to second order in the displacement field s.
In the final evaluation of

C
(τ)
λλ′ =

(
∂2 Eintr

kin

∂qλ∂qλ′

)
q=0

(C.3)

= �

∫
d3r

�
2

2

{
∂2

∂qλ∂qλ′

〈k̃2〉
m∗(�̃)

}
q=0

we encounter integrals∫
d3r(∇ · s)2 =

∑
λ

q2
λ κ4

nl (C.4)

and∑
i,j

∫
d3r (∂i∂jχλ)(∂i∂jχλ′) = (C.5)∫

d3r {
∑
i,j

∂i[(∂jχλ)(∂i∂jχλ′)] − (∂jχλ)∂i∂i(∂jχλ′)} .

Here, starting with (C.3), and in the following we im-
ply that integration over r is limited to the unperturbed
sphere (r ≤ R). In (C.5) the second term on the r.h.s. is
evaluated using

∑
i ∂i∂i = ∆ and (38) twice (on the way

one more integration by parts and transformation to a
surface integral that vanishes as χλ(R) = 0), which leads
to ∫

d3r (∂jχλ)∂i∂i(∂jχλ′) = κ2
nlκ

2
n′l′ δλλ′ . (C.6)

The first term on the r.h.s. of (C.5) is transformed to the
symmetric form∑

i,j

∫
d3r ∂i[(∂jχλ)(∂i∂jχλ′)] = (C.7)

1
2

∑
i,j

∫
d3r ∂i∂i(∂jχλ∂jχλ′) = −4κnlκn′l′

R2
δll′δmm′ .

The latter result is obtained by transforming to a surface
integral and utilizing the properties of derivatives of Bessel
functions on the surface,

j′′l (κnlR) = − 2
κnlR

j′l(κnlR) , (C.8)

which result from their differential equation taken at r =
R.

The final result given by eq. (46) is obtained by putting
all terms together, including the linear density dependence
of (m∗(�̃))−1 and summing over protons and neutrons.

Appendix C.2. Interaction-energy contribution C
(V )
λλ′

This term is calculated from the expression

C
(V )
λλ′ =

{
∂2

∂qλ∂qλ′

∫
d3r′ εV (�̃(r′))

}
q=0

. (C.9)

With the explicit introduction of the displacement field
s(r) we can transform the integral over r′ to an integral
over r = r′ − s(r, t) by replacing d3r′ by d3r �(r)/�̃(r′).
We find

C
(V )
λλ′ = 2

(
1
2
∂2εV (�)

∂�2
− 1

�

∂εV (�)
∂�

+
εV (�)
�2

)
×

∫
d3r

(
∂�̃

∂qλ

∂�̃

∂q′λ

)
q=0

(C.10)

+
(
∂εV (�)

∂�
− εV (�)

�

) ∫
d3r

(
∂2�̃

∂qλ∂q′λ

)
q=0

,

where �(r) = � for r ≤ R is used. Insertion of (A.15),
(A.16) and (C.7) yields the result given by (51).

Appendix C.3. Weizsäcker-energy contribution C
(W )
λλ′

This term is calculated from the expression

C
(W )
λλ′ = eW

{
∂2

∂qλ∂qλ′

∫
d3r′ (∇�̃)2r′=r+s

}
q=0

, (C.11)

where εW = eW (∇�)2 has been used. Note that the sur-
face energy is treated explicitly below, and hence is ex-
cluded here. The integral over r′ is again replaced by an
integral over r. However, since ∇�̃ = O(qλ) we only need
in second order ∂�̃/∂qλ given by (A.15) without an ad-
ditional contribution from the change of integration vari-
able. By partial integration and using (36), (38) and (39)
we find the result (52).

Appendix C.4. Surface-energy contribution C
(S)
λλ′

This term is calculated from the expression

C
(S)
λλ′ =

{
∂2

∂qλ∂qλ′

∫
df̃ εs(�̃)

}
q=0

, (C.12)

where the integration runs over the deformed surface

r(Ω) = R+ sr(R,Ω) (C.13)

with the radial displacement

sr =
∑

λ

qλ
κnl

R

√
2
R

Ym
l (Ω) , (C.14)

while the other components of s vanish (for r = R). In-
troducing (cf. [35])

df̃ = dΩ r2(Ω)
√
1 + (∇sr)2 (C.15)

for the deformed surface element, we are left with an in-
tegration over Ω. One should note that ∇sr contains only
angular derivatives. Furthermore, since εS(�̃) is quadratic
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in �̃, we have (∇·s = 0 on the surface) up to second order
in s

εS(�̃, R) = εS(�){1− 2(∇′ −∇) · s}r=R (C.16)

= εS(�)

{
1 + 2

(
∂sr

∂r

)2
}

r=R

.

Thus we find

C
(S)
λλ′ = εS(�)

{
∂2

∂qλ∂qλ′
(C.17)∫

dΩ{9s2
r(R) +R2(∇sr(R))2}

}
q=0

,

where (∂sr/∂r)r=R = −(2/R)sr(R,Ω) has been used (cf.
eqs. (41), (C.8), (C.14)). Insertion of sr according to (41)
and partial integration of the second term yields the ex-
pression (54) for the surface part of the stiffness tensor.

Appendix C.5. Coulomb-energy contribution C
(C)
λλ′

This term is defined by

C
(C)
λλ′ =

{
∂2

∂qλ∂qλ′

1
2

∫
d3r′1d

3r′2
�̃p(r′1)�̃p(r′2)
|r′1 − r′2|

}
q=0

,

(C.18)

where r′1 = r1 + s(r1), r′2 = r2 + s(r2) and �̃p = e0(Z/A)�̃
denotes the charge density of the distorted sphere. Re-
placing the integration variables by r1 and r2 and using
particle conservation d3r′�̃(r′) = d3r�(r) in the displace-
ment from r to r′ = r+ s(r) we find

C
(C)
λλ′ =

1
2

(
Ze0

A
�

)2

(C.19)

×
{

∂2

∂qλ∂qλ′

∫
d3r1d3r2

|r1 + s(r1)− r2 − s(r2)|
}

q=0

,

where the integrals are over r1, r2 ≤ R (the unperturbed
sphere). The terms of the integral, which are of second
order in s or qλ are given by the sum of I1 and I2. I1 is
defined by

I1 =
∫

d3r1d3r2 [s(r1) · ∇1][s(r2) · ∇2]
1

|r1 − r2| . (C.20)

Inserting s(r2) = ∇2w(r2), integrating by parts over r2

(noting w(R) = 0) and using∆|r1−r2|−1 = −4πδ(r1−r2),
we find

I1 = 4π
∫

d3r(∇w)2 . (C.21)

I2 is related to I1 by

I2 =
∫

d3r1 s(r1) · [s(r1) · ∇1]∇1

∫
d3r2

|r1 − r2|
= −2π

3

∫
d3r s(r) · [s(r) · ∇]∇r2 = −1

3
I1 . (C.22)

Finally, by partial integration, using (A.14) and taking
derivatives with respect to qλ, qλ′ we find the result given
by (53).
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7. G. Peilert, H. Stöcker and W. Greiner, Rep. Prog. Phys.
57, 533 (1994).

8. J. Aichelin, Phys. Rep. 202, 233 (1991). and refs. therein.
9. L. Vinet, C. Gregoire, P. Schuck, B. Rémaud and
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